LUMI Architecture

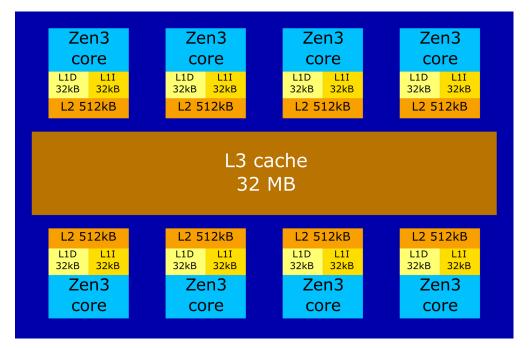
Kurt Lust LUMI User Support Team (LUST) University of Antwerp

Evolving version

Why do I need to know this?

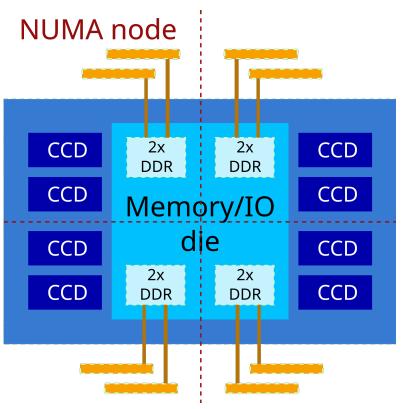
- **Q:** "I only want to run, why do I need to know about system architecture?"
- A: An HPC system is not a big smartphone or big PC
 - You don't have the whole system for yourself; it is a shared infrastructure
 - Scaling is not for free
 - Often an application needs to be mapped on the hardware to run efficiently
 - Which requires an understanding of
 - The hardware: This section
 - The middleware between the application and the hardware: Several sessions during this course
 - The application: Very domain-specific and hence not the topic of a general course
 - The specific problem you're trying to solve
 - 20% unused performance = 32M EURO (or 50M EURO including expected exploitation costs)

LUMI is...

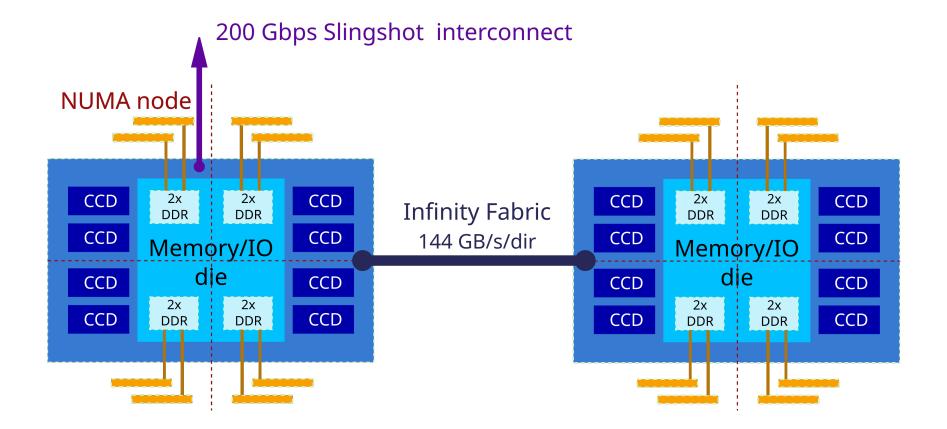

... a (pre-)exascale supercomputer ...

- ... and not a superfast PC ...
- ... and not a compute cloud infrastructure.
- Each of these infrastructures have their own trade-offs
- A supercomputer is
 - Build for scalable parallel applications in the first place
 - A shared infrastructure with lightweight management
 - Principle: Reduce hardware costs by clever software
 - Build for streaming data through the machine at all levels, not for random access to small bits of data

LUMI spec sheet: A modular system

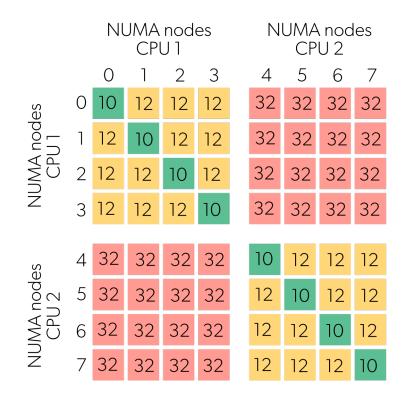

- LUMI-G: 2978 nodes with 1 AMD EPYC 7A53 CPU and 4 AMD MI250x accelerators (512 GB + 4x128 GB RAM)
- LUMI-C: 2048 nodes with 2 64-core AMD EPYC 7763 CPUs (1888x 256GB, 128x 512 GB and 32x 1TB)
- Nodes for interactive data analytics: 8 4TB CPU nodes and 8 nodes with 8 GPUs each for visualisation
- LUMI-F: 8 PB Lustre flash-based file storage (>2 TB/s)
- LUMI-P: 4 20 PB hard disk based Lustre file systems (4x 240 GB/s)
- 30 PB object based file system
- 4 user access nodes with two AMD Rome CPUs each for ssh access and some for web access via Open OnDemand
- All linked together with a HPE Cray Slingshot 11 interconnect

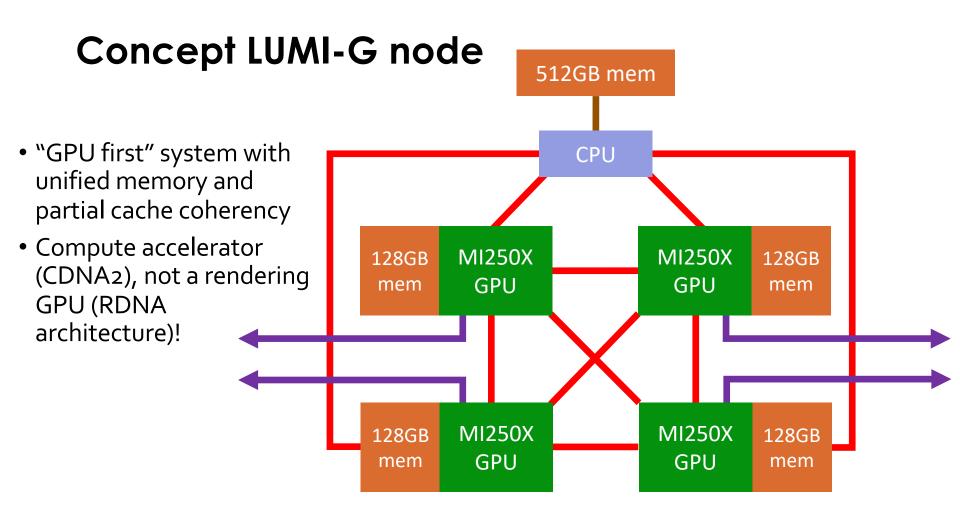
The AMD EPYC 7xx3 (Milan/Zen3) CPU


- Building block: a Core Complex Die (CCD)
- 8 cores
 - Each core has private L1 and L2 caches
 - L3 cache shared
- Instruction set equivalent to Intel Broadwell generation and Rome/Zen2
 - AVX2+FMA, no AVX-512
- Rome/Zen2 has 2 4-core core complexes per die.
 - Milan architecture simpler

The AMD EPYC 7xx3 (Milan/Zen3) CPU

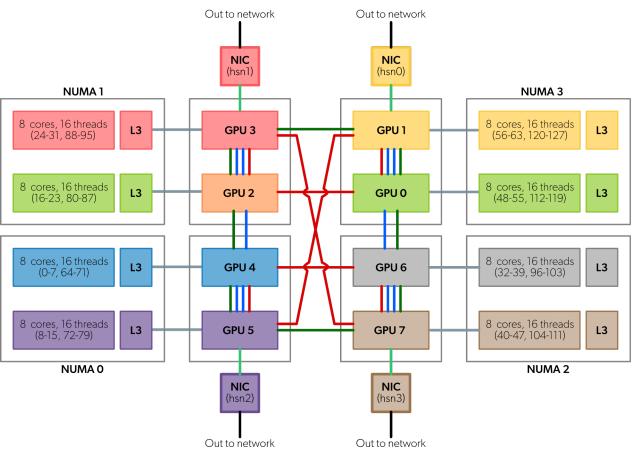
- 8 CCDs or 8 L3 cache regions
 - Memory/IO die logically split into 4 NUMA domains with
 - 2 CCDs (16 cores)
 - 2 DDR4 controllers
 - Memory/IO die also provides the PCIe links and intersocket links
- Comparision with Rome/zen2:
 - Rome/zen2 has 16 L3 cache regions with 4 cores each (in the 64-core variant)

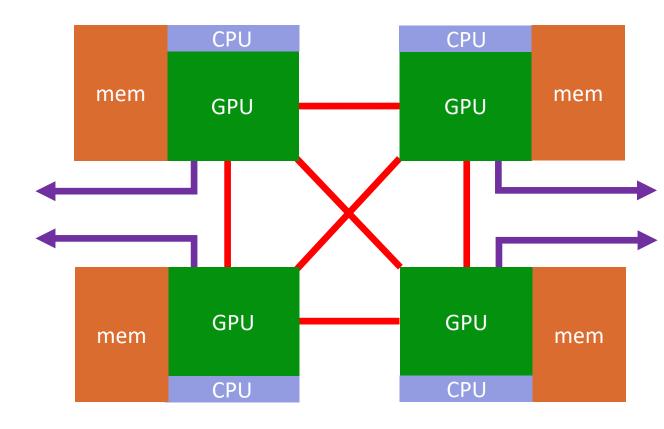

LUMI-C node


Strong hierarchy

hierarchy layer		per	sharing	distance	data transfer delay	data transfer bandwicth
1	2 threads	core	L1I, L1D, L2, exection units, rename registers		K	
2	8 cores	CCD	L3 Link to I/O die			
3	2 CCDs	NUMA node	DRAM channels (and PCIe lanes)			
4	4 NUMA nodes	socket	inter-socket link			
5	2 sockets	node	inter-node link			

Delays in numbers

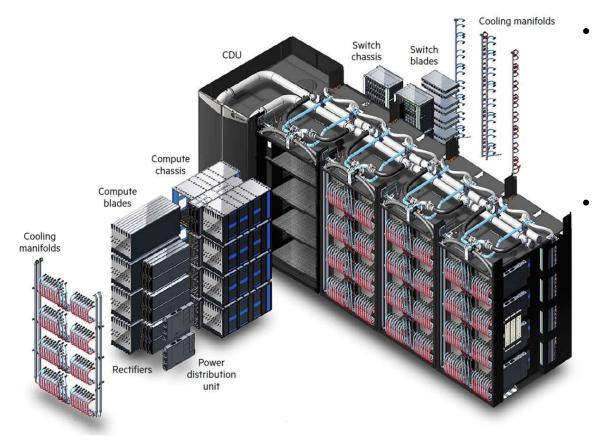

- NUMA behaviour not that pronounced within a socket
- but definitely something to take into account between sockets


Real LUMI-G node

- 4 GPUs behave as 8 with 64GB each
- Bandwidth between the dies is low
- Binding to the CCDs

 is important for
 performance: Each GPU
 die closely associated to
 an L3 cache region

The future we're preparing for...



- AMD MI300A
- 13 chiplet design:
 - 4 memory/IO,
 - 6 GPU,
 - 3 CPU
- CPU and GPU share the memory controllers
- 128 GB memory capacity per package may be a bit disappointing
- Upcoming El Capitan system in the USA and Hunter @ HLRS

Slingshot interconnect

- 200 Gb/s (25 GB/s/dir) interconnect based on Ethernet but with proprietary extensions for better HPC performance
 - Adapts to Ethernet devices in the network
 - Lot of attention to adaptive routing and congestion control
 - MPI acceleration
- Not your typical Mellanox/NVIDIA software stack with ucx but libfabric...
- Dragonfly topology
 - 16 switch ports connect to nodes, 48 to other switches
 - 16 or 32 switches in a group with all-to-all connection between the switches in a group
 - Groups are then also connected in an all-to-all way
 - Possible to build large networks where nodes are only 3 hops between switches away on an uncongested network

HPE Cray EX system

LUMI-C

- 1 network port/node
- 4 nodes/compute blade
- 2 switch blades/chassis
- 4 nodes on a blade distributed over 2 switches!
- LUMI-G
 - 4 network ports/node
 - 2 nodes/compute blade
 - 4 switch blades/chassis
 - 2 nodes on blade on other switch pair!

LUMI (artist rendering)

Questions?