
Process and thread distribution and
binding

Kurt Lust
LUMI User Support Team (LUST)

University of Antwerp

Evolving version, last update December 2024

What are we talking about?

• Distribute processes and threads across the available resources for the job

• and bind them to the resources to ensure they stay there and only use the assigned
resources
• Across nodes: Only distribution

• Within a node: Binding necessary

• System software level (Linux/ROCm/Slurm):
• Control groups used at the job and job step level, sometimes at the task level

• Affinity mask to control where a thread can get scheduled

• ROCm runtime also has a mechanism to control access to GPUs

• Tools for verification in the lumi-CPEtools modules

When/where is it done?

• Slurm level
• Creation of allocation: Slurm reserves resources at the node level using control groups

• Creation of job step:

• Distributes tasks across nodes and cores/hardware threads on nodes

• Default in most cases: Binds tasks to CPUs (affinity mask) and GPUs (control groups
unfortunately)

• Application library level
• Cray MPICH can renumber the ranks

• OpenMP runtime: select number of CPU threads and thread binning within the resources of a
task using affinity masks

• ROCm runtime: Select GPUs using ROCR_VISIBLE_DEVICES

• Does not always make sense on nodes that are not job-exlusive!

Why do I need this?

• Importance of memory locality at all levels (cache and main memory)
• E.g.: MPI application with 14 GB/rank so 16 ranks on node: Spread out across CCDs…

• Shared memory with lack of memory locality: Maybe need to bundle threads if the application
fits in a socket

• No solution that’s always optimal!

• Short connection between CPU and GPU sometimes essential for fast communication
between both
• Cache-coherent accesses to GPU memory by the CPU

• Mapping of MPI ranks to reduce inter-node traffic and maximise intra-node traffic
which is much faster
• Also on the GPU: Map communication pattern on the topology of a node

Core numbering

• Linux core (actually hardware thread/virtual core) numbering does not reflect the
hierarchy
• Numbers 0-127 on LUMI-C are the first hardware thread on each physical core, 128-255 then

the second one, so i and i+128 map onto the same physical core

• On LUMI-G: Core 0-63 first hardware thread, core 64-127 second, so i and i+64 map onto the
same physical core

• Hardware threading on LUMI is turned on when booting a node
• Slurm does not turn hardware threading off, but doesn’t include the second hardware thread

in the affinity mask when multithreading is off

• Slurm only does so at the regular job step level

• The Slurm batch step will always see both hardware threads for each core!

• Technical discussion in the notes if you’re interested

GPU Numbering (1)

• Very tricky

• Numbering based on the PCIe bus IDs
• Global numbering or bare-OS numbering

GPU Numbering (2)

• Very tricky

• Numbering based on the PCIe bus IDs
• Global numbering or bare-OS numbering (0-7)

• Job-level control group
• New numbering starting from 0: job-local numbering

• Same order though

• Task-level control group

• Yet another numbering starting from 0: task-local numbering

• And a headache for MPI and RCCL applications

• Further restricting access via ROCR_VISIBLE_DEVICES will start yet another numbering
in, e.g., the HIP runtime

GPU Numbering - Remarks

• Very technical demonstrations in the notes

• Slurm works differently with CPUs and GPUs on LUMI
• CPUs: Control groups at the job level, after that affinity masks

• GPUs: Control groups at the job and task level, even though ROCR_VISIBLE_DEVICES plays a
bit the role of an affinity mask

• Affinity masks work differently from ROCR_VISIBLE_DEVICES
• Affinity masks always refer to the global / bare OS numbering of the hardware threads

• ROCR_VISIBLE_DEVICES numbering is based on the local numbering in the context where
the variable is used

• Affinity masks can only shrink as you go deeper in a hierarchy

• ROCR_VISIBILE_DEVICES, being just an environment variable, can be abused to gain access
to extra resources (within the confines of the control group)

Task distribution with Slurm (1)

• srun --distribution={block|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack|NoPack}]

• Level 1: Distribution of tasks across nodes
• block: Fill first node in allocation, then fill second, etc.

• Pack: Fill completely before moving to the next node

• NoPack: More ballanced, trying to fill all nodes as equally as possible

• cyclic: First assign one task to each node, then from the first node again assign a second task, …

• plane=<s>: As cyclic, but assigning s tasks at a time before moving on

• More options that we do not discuss

Task distribution with Slurm (2)

• srun --distribution={block|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack|NoPack}]

• Level 2: Distribution of tasks across cores
• block: Consecutive sets of cores for each task

• cyclic: First assign one task to each socket on the first set of consecutive cores/virtual cores of
each socket, then assign a second task on each socket on the next set of cores, …

• fcyclic: Will spread tasks out across sockets

• Not clear where this is useful on an AMD system except for cases with one task per node and
a lot of memory for that task

• Level 3 not shown in this simplified version

• Default: block:block:nopack but block:* results in block:cyclic

• L2 and L3 distribution conflicts with the CPU binding mechanism that we will discuss
• But usefull with --cpus-per-task

Task-to-CPU binding with Slurm

• Works with affinity masks

• srun --cpu-bind=[{quiet|verbose},]<type>

• Some <type> options are for automatic binding
• --cpu-bind=threads is the default behaviour on LUMI

• Other options: See the manual

• Other <type> options define a list of slots to be used
• Combination with --distribution L2/L3 options does not make sense

• --cpu-bind=map_cpu:<cpu_id_for_task_0>,<cpu_id_for_task_1>,... : Specify a
single hardware thread for each task on the node

• For MPI programs

• --cpu-bind=mask_cpu:<mask_for_task_0>,<mask_for_task_1>,... : Specify afinity
mask for each task on the node.

• For OpenMP or hybrid programs

Task-to-CPU binding with Slurm: Masks

• Slurm uses hexadecimal masks to select which CPU cores tasks should bind to
• Bits ordered right to left

• First bit masks core #0

• Each task need its mask

• Single mask for 7 cores out of 8 (disabling core #0)
• Core numbers: 76543210

• Binary mask: 11111110

• Hexadecimal value: 0xfe

• Leading zeros can be omitted, but each element can still be very long

Task-to-CPU binding with Slurm: Examples

• salloc --nodes=1 --partition=standard-g
module load LUMI/24.03 partition/G lumi-CPEtools/1.1-cpeGNU-24.03
srun --ntasks=8 --cpu-bind=map_cpu:49,57,17,25,1,9,33,41 mpi_check –r

• Example will be relevant for LUMI-G

• srun --ntasks=8 --cpu-bind=mask_cpu:\
7e000000000000,7e00000000000000,7e0000,7e000000,7e,7e00,7e00000000,7e0000000000 \
hybrid_check –r

• Like the above but now enabling 6 cores per CCD (1-6).

• Masks with use of both hardware threads can become extremely long, certainly on LUMI-C…

• Playing with --cpus-per-task and then further restricting with OpenMP environment
variables may be the easier way on LUMI-C

• Do not combine with -c/--cpus-per-task!

Task-to-GPU binding with Slurm

• Currently not recommended on LUMI
• The control groups mechanism that Slurm uses breaks Peer2Peer IPC for GPU-aware MPI

• srun --gpu-bind=[{quiet|verbose},]<type>

• Some <type> options are for automatic binding
• --gpu-bind=none is the most useful variant on LUMI: Turns off Slurm binding

• --gpu-bind=closest is broken on LUMI

• Other options: See the manual

• Other <type> options for fully manual distribution
• --gpu-bind=map_cpu:<gpu_id_for_task_0>,<gpu_id_for_task_1>,... : Specify a

single GPU for each task on the node

• --gpu-bind=mask_cpu:<mask_for_task_0>,<mask_for_task_1>,... : Specify
multiple GPUs via a mask (but only 2 hexadecimal digits as there are only 8 GPUs per node)

MPI rank redistribution with Cray MPICH

• Default behaviour: MPI rank i on task i

• Cray MPICH has its own mechanism to reorder MPI ranks on Slurm tasks that is more
powerful than Slurm’s
• Best to use block distribution in Slurm for this.

• export MPICH_RANK_REORDER_METHOD=0 : Round-robin (like Slurm cyclic ordering)

• export MPICH_RANK_REORDER_METHOD=1 : Default, preserve the ordering from Slurm

• export MPICH_RANK_REORDER_METHOD=2 : Folded rank placement: First assign ranks on
first task slot of each node from 0 till …, then assign a rank on the second task slot but now
from … till 0, and so on.

• export MPICH_RANK_REORDER_METHOD=3 : Custom ordering set by the file
MPICH_RANK_ORDER (or $MPICH_RANK_REORDER_FILE)

• The CPE has profiling tools that help you determine the optimal rank ordering

• See the 4/5-day Advanced LUMI course for more details

Refining core binding in OpenMP

• Slurm will assign cores up to the task/process level
• Special case: Batch job step: All hardware threads of all cores of the first node of the job

• Thread-level control in OpenMP through library functions or environment variables
• Debug: export OMP_DISPLAY_AFFINITY=true

• export OMP_NUM_THREADS=<num> : Set number of threads

• Multiple comma-separated numbers possible for multi-level parallelism

• OMP_PLACES to define the places to use for binding: hardware thread level, core level or
socket level, or an explicit list

• OMP_PROC_BIND to set distribution and binding strategy over places

• Single level parallelism: Experiment with omp_check and hybrid_check in
lumi-CPEtools

Refining core binding in OpenMP:
OMP_PLACES

• Defines the places to use for binding
• OMP_PLACES=threads : OpenMP threads restricted to a single hardware thread (default)

• OMP_PLACES=cores : OpenMP threads restricted to both hardware threads of a core

• OMP_PLACES=socket : OpenMP threads restricted to all hardware threads of a single socket

• Or define a set of locations (very technical)
export OMP_PLACES="{0,1,2,3},{8,9,10,11},{16,17,18,19}”
export OMP_PLACES="{0:4}:3:8”

• Core numbers here are relative to those available to the process and not physical numbers

Refining core binding in OpenMP: OMP_PROC_BIND

• Distribution over the places and binding selection:
• OMP_PROC_BIND=false : Turn off OpenMP thread binding, use the task affinity mask

• OMP_PROC_BIND=close : Try to keep the OpenMP threads as close as possible with one in
each place (unless oversubscribed)

• OMP_PROC_BIND=spread : Try to spread the OpenMP threads out as much as possible

• OMP_PROC_BIND=master : Keep threads in the same place as the master thread.

• Mostly useful if the place is a socket

• Multiple comma-separated options possible for nested parallelism

• Non-standard option in CCE: auto which is the default (other compilers: false)
• CCE does a very reasonable job in many cases

• Many implementations have additional environment variables to tune the distribution

GPU binding with ROCR_VISIBLE_DEVICES

• Works at a very low level of the ROCm software stack

• Limits visibility to certain GPUs for all applications using the ROCm runtime
• So also covers HIP and OpenCL

• Value: Comma-separated list of all device indices exposed to the application
• Uses the local numbering in the control group

• Differences with affinity masks for CPUs
• Affinity masks are OS-controled

• Therefore the OS can ensure you can only make masks more restrictive than the parent

• Affinity masks always use the global numbering of hardware threads while
ROCR_VISIBLE_DEVICES uses the local numbering in the control group

GPU binding: Optimal mapping (1)

CCD Available HWTs GCD

0 1-7, 65-71 4

1 9-15, 73-79 5

2 17-23, 81-87 2

3 25-32, 89-95 3

4 33-39, 97-103 6

5 41-47, 105-111 7

6 49-55, 113-119 0

7 57-63, 121-127 1

GPU binding: Optimal mapping (2)

GCD CCD Available HWTs

0 6 49-55, 113-119

1 7 57-63, 121-127

2 2 17-23, 81-87

3 3 25-32, 89-95

4 0 1-7, 65-71

5 1 9-15, 73-79

6 4 33-39, 97-103

7 5 41-47, 105-111

GPU binding: Embedded rings

• Green ring: 0 – 1 – 3 – 2 – 4 – 5 – 7 – 6 – 0

• Red ring: 0 – 1 – 5 – 4 – 6 – 7 – 3 – 2 – 0

GPU binding: Implementation

• Combination of two mechanisms:

• CPU side: Use --cpu-bind, or in some cases simply --cpus-per-task

• GPU side: Manual binding required by setting ROCR_VISIBLE_DEVICES because
Slurm uses a mechanism with unwanted side effects.
• Use a wrapper script that computes the proper GPU(s) from the Slurm local task id, sets
ROCR_VISIBLE_DEVICES and then starts the application

GPU binding: Linear GCD, match cores (1)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND1="map_cpu:49,57,17,25,1,9,33,41"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select_gpu_$SLURM_JOB_ID gpu_check -l

GPU binding: Linear GCD, match cores (2)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND2="mask_cpu:0xfe000000000000,0xfe00000000000000"
CPU_BIND2="$CPU_BIND2,0xfe0000,0xfe000000"
CPU_BIND2="$CPU_BIND2,0xfe,0xfe00"
CPU_BIND2="$CPU_BIND2,0xfe00000000,0xfe0000000000"
srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select_gpu_$SLURM_JOB_ID gpu_check -l

GPU binding: Linear CCD, match GCD (1)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(4 5 2 3 6 7 0 1)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND1="map_cpu:1,9,17,25,33,41,49,57"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select_gpu_$SLURM_JOB_ID gpu_check -l

GPU binding: Linear CCD, match GCD (2)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(4 5 2 3 6 7 0 1)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND2="mask_cpu"
CPU_BIND2="$CPU_BIND2:0x00000000000000fe,0x000000000000fe00"
CPU_BIND2="$CPU_BIND2,0x0000000000fe0000,0x00000000fe000000"
CPU_BIND2="$CPU_BIND2,0x000000fe00000000,0x0000fe0000000000"
CPU_BIND2="$CPU_BIND2,0x00fe000000000000,0xfe00000000000000"
srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select_gpu_$SLURM_JOB_ID gpu_check -l

GPU binding: Linear CCD, match GCD (3)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(4 5 2 3 6 7 0 1)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
srun --ntasks=$((SLURM_NNODES*8)) –cpus-per-task=7 \

./select_gpu_$SLURM_JOB_ID gpu_check -l

…
export OMP_NUM_THREADS=6
srun --ntasks=$((SLURM_NNODES*8)) –cpus-per-task=7 \

./select_gpu_$SLURM_JOB_ID gpu_check -l

GPU binding: Green ring (1)

Task GCD CCD HWTs

0 0 6 49-55, 113-119

1 1 7 57-63, 121-127

2 3 3 25-32, 89-95

3 2 2 17-23, 81-87

4 4 0 1-7, 65-71

5 5 1 9-15, 73-79

6 7 5 41-47, 105-111

7 6 4 33-39, 97-103

GPU binding: Green ring (2)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(0 1 3 2 4 5 7 6)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND1="map_cpu:49,57,25,17,1,9,41,33"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select_gpu_$SLURM_JOB_ID gpu_check -l

GPU binding: Green ring (3)
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(0 1 3 2 4 5 7 6)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CCD_MASK=(0x00000000000000fe \

0x000000000000fe00 \
0x0000000000fe0000 \
0x00000000fe000000 \
0x000000fe00000000 \
0x0000fe0000000000 \
0x00fe000000000000 \
0xfe00000000000000)

CPU_BIND2="mask_cpu"
CPU_BIND2="$CPU_BIND2:${CCD_MASK[6]},${CCD_MASK[7]}"
CPU_BIND2="$CPU_BIND2,${CCD_MASK[3]},${CCD_MASK[2]}"
CPU_BIND2="$CPU_BIND2,${CCD_MASK[0]},${CCD_MASK[1]}"
CPU_BIND2="$CPU_BIND2,${CCD_MASK[5]},${CCD_MASK[4]}"
srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select_gpu_$SLURM_JOB_ID gpu_check -l

“Allocate by resources” partitions

• Proper binding not possible unless exclusively allocating entire nodes only

• Slurm will use a control group per task for the GPUs
• You almost have to use --gpus-per-task to ensure that GPUs and tasks are on the

same nodes (unless you use just a single node)

• Problems with Peer2Peer IPC

• Solution:

• Turn off with --gpu-bind=none

• This will number visible GPUs for the job on each node from 0,

• and we can then again use the local task ID to assign a GPU to each task via
ROCR_VISIBLE_DEVICES via the select_gpu script trick.

• Optimal mapping is not possible

Questions?

	Slide 1: Process and thread distribution and binding
	Slide 2: What are we talking about?
	Slide 3: When/where is it done?
	Slide 4: Why do I need this?
	Slide 5: Core numbering
	Slide 6: GPU Numbering (1)
	Slide 7: GPU Numbering (2)
	Slide 8: GPU Numbering - Remarks
	Slide 9: Task distribution with Slurm (1)
	Slide 10: Task distribution with Slurm (2)
	Slide 11: Task-to-CPU binding with Slurm
	Slide 12: Task-to-CPU binding with Slurm: Masks
	Slide 13: Task-to-CPU binding with Slurm: Examples
	Slide 14: Task-to-GPU binding with Slurm
	Slide 15: MPI rank redistribution with Cray MPICH
	Slide 16: Refining core binding in OpenMP
	Slide 17: Refining core binding in OpenMP: OMP_PLACES
	Slide 18: Refining core binding in OpenMP: OMP_PROC_BIND
	Slide 19: GPU binding with ROCR_VISIBLE_DEVICES
	Slide 20: GPU binding: Optimal mapping (1)
	Slide 21: GPU binding: Optimal mapping (2)
	Slide 22: GPU binding: Embedded rings
	Slide 23: GPU binding: Implementation
	Slide 24: GPU binding: Linear GCD, match cores (1)
	Slide 25: GPU binding: Linear GCD, match cores (2)
	Slide 26: GPU binding: Linear CCD, match GCD (1)
	Slide 27: GPU binding: Linear CCD, match GCD (2)
	Slide 28: GPU binding: Linear CCD, match GCD (3)
	Slide 29: GPU binding: Green ring (1)
	Slide 30: GPU binding: Green ring (2)
	Slide 31: GPU binding: Green ring (3)
	Slide 32: “Allocate by resources” partitions
	Slide 33: Questions?

