
Files on LUMI 2: LUMI-O object storage
Kurt Lust

LUMI User Support Team (LUST)
University of Antwerp

Evolving version, last update Dec. 2024

Why do I need to know this?

• LUMI-O is the primary option on LUMI to transfer large amounts of data
to LUMI

• LUMI-O is the only local option if you want to backup some data

• Some datasets come in a format optimised for object storage rather than
a parallel file system

• What we will discuss:
• Properties of object storage
• Getting started
• But not a reference manual of the tools that can be used on LUMI-O

What is LUMI-O?

• Object storage system, based on Ceph
• Finnish users: similar to Allas, but less functionality at the moment

• Specific tools to access data, not mounted as a regular file system

• Organisation:
• Projects: LUMI projects

• Buckets: “Containers” used to store objects.

• Flat structure: Buckets cannot contain other buckets

• Objects: Any type of data, stored in a bucket

• Atomic access to objects: Put, get, copy, delete, …, but no partial write

• Metadata for buckets and objects

• Bucket: e.g., access rights

• Custom metadata possible

What is LUMI-O? (2)

• Objects can be served on the web also
• This is how recordings of some LUST courses are served

• But not meant as a data publishing service (e.g., no EUDAT alternative)

• Can be reached easily from outside LUMI
• So also a mechanism for data exchange

• Tools of object storage are more performance and more robust than sftp

• Specs:
• Capacity: 30 PB

• Quota: 150 TB capacity, 1K buckets and 500K objects per bucket (fixed)

• Billed at 0.5 TB·hour per TB per hour

• Persistent for the duration of the project

Lustre vs LUMI-O (1)

Lustre LUMI-O object storage

Closely integrated with compute nodes Separate system

Upgrades with the system Separate upgrade cycle and on-the-fly

Organisation: Hierachical directory
structure and files

Organisation: Triple flat space of projects,
buckets and objects

Files can be read, written, modified,
appended, …

Simple atomic operations on objects: put,
get, copy, delete

Optimised for bandwidth to the compute
nodes

Optimised for reliability and resilience

Simpler schemes for redundancy Very complex internal redundancy setup

Lustre vs LUMI-O (2)

Lustre LUMI-O object storage

Integrated in the authentication of the
supercomputer

Separate key-based authentication
mechanism

Seen as any other POSIX file system Separate range of access tools/APIs,
some tools can provide a filesystem view

No external access External access integrated, includes web

Structure with MDS and ODS Structure with MDS and ODS, but very
different technologies

Parallelism for performance: Access a file
in parallel from multiple processes

Parallelism for performance: Different
processes access different objects

Fairly expensive to very expensive
hardware

Cheaper hardware

LUSTRE vs LUMI-O (3)

• The optimal way/technology of storing data is very different depending
on whether you work from a parallel file system or from object storage.
E.g., in earth and climate science:
• netCDF is a popular data storage format for storing simulation data on a

parallel filesystem
• Not suited for object storage though as it would be a single object

• Zarr is a format to store similar data on object storage (cloud storage)
• It is not a single object, but a structured collection of objects

• Putting it on a parallel filesystem where each object would become a file in a
directory tree is a very bad idea!

• But with the right libraries, you can access Zarr data on object storage directly
from your application

Accessing LUMI-O

• Access is based on authentication keys
• Generated via a web interface: Separate steps to generate the credentials and to get

them on LUMI.

• Or generated via Open OnDemand: Can put credentials on LUMI for rclone and s3cmd.

• Tools:
• rclone: Easiest tool if you want public and private data

• s3cmd

• restic: More a backup tool

• boto3: Python API from the AWS SDK for programmatic access

• Needs a more recent Python version than the system Python

• Additional GUI-based tools exist for clients

• Open OnDemand web interface is not a substitute!

• Speed limited by browser protocols

module lumio

The credential management web interface

• Credential management web interface at auth.lumidata.eu
• Create keys

• Extend lifetime of a key

• Create configure scripts for various tools

https://auth.lumidata.eu/

Credential mangement web interface:
Create credentials (1)

The credential management web interface

• Credential management web interface at auth.lumidata.eu
• Create keys

• Extend lifetime of a key

• Create configure scripts for various tools

• You’ll have to select your login method in the same way as for Open
OnDemand

https://auth.lumidata.eu/

Credential mangement web interface:
Create credentials (2)

The credential management web interface

• Credential management web interface at auth.lumidata.eu
• Create keys

• Extend lifetime of a key

• Create configure scripts for various tools

• You’ll have to select your login method in the same way as for Open
OnDemand

• After a while you should see a list of projects, select the one for which
you want to generate a key
• The right column will also show active keys for the project, and expired ones

https://auth.lumidata.eu/

Credential mangement web interface:
Create credentials (3)

Credential mangement web interface:
Create credentials (4)

The credential management web interface

• Credential management web interface at auth.lumidata.eu
• Create keys
• Extend lifetime of a key
• Create configure scripts for various tools

• You’ll have to select your login method in the same way as for Open
OnDemand

• After a while you should see a list of projects, select the one for which
you want to generate a key
• The right column will also show active keys for the project, and expired ones

• Selecting an active access key changes the right column to one where
you get information about the key, can extend the key and can generate
templates to configure various tools

https://auth.lumidata.eu/

Credential mangement web interface:
Check credentials

Endpoint URL: https://lumidate.eu/

Credential mangement web interface:
Extend credential lifetime

Credential mangement web interface:
Tool configuration (1)

Credential mangement web interface:
Tool configuration (2)

Access through Open OnDemand

• Open OnDemand provides
• An app for simple credential management, including generation of config files for
rclone and s3cmd on LUMI.

• The “Home Directory” app can be used to browse, download and upload objects
and to create buckets.
Structure resembles view of a typical rclone-based browser.

• Note that Open OnDemand is not a replacement for proper tools for
access to LUMI-O!
• Uploading and downloading is through web protocols that are not as performant

as proper object storage tools.

Credential management via OOD (1)

Credential management via OOD (2)

Overview

Credential management via OOD (3)

Configure public end point also
Configure for s3cmd
Select project

Credential management via OOD (4)

Overview

Credential management via OOD (5)

Browsing via OOD (1)

Browsing via OOD (2)

Buckets

Browsing via OOD (3)

Pseudo-folder, not an object or bucket

End point Bucket

Browsing via OOD (4)

Not the object name

End point Bucket

intro-evolving/files/exercises-evolving.tar

CLI tool configuration on LUMI:
lumio-conf

• On LUMI, you can use lumio-conf to configure rclone, s3cmd, aws
and boto3
• Need to load the lumio module which also provides rclone, s3cmd and restic

• Will ask for data from the “Access key details” screen

• Default is to create configurations for rclone and s3cmd .
Try lumio-conf -h to see other options.

• Generate the configuration snippets via the web interface
• E.g., for rclone: copy manually to ~/.config/rclone/rclone.conf

• Can be used to configure tools on your computer also.

CLI tool configuration on LUMI:
lumio-conf, rclone and s3cmd

• The rclone configuration contains two endpoints

• lumi-46YXXXXXX-private: Private buckets and objects

• lumi-46YXXXXXX-public: Public buckets and objects

Note that this was different with an earlier version of the tool

• The s3cmd config file can only contain data for one project.
Solution implemented by lumio-conf:
• Store information for project 46YXXXXXX in ~/.s3cfg-lumi-46YXXXXXX

• Also overwrite ~/.s3cfg with the same data

• So s3cmd will by default use the project from ~/.s3cfg but if a user has active
configurations for multiple projects, the -c flag can be used to point s3cmd to the
right configuration file.

Bucket and object names

• Bucket name
• Unique name within a project
• Must be between 3 and 63 characters long, lowercase letters, numbers, hyphens and

dots, must not contain uppercase characters or underscores
• Must start with a lowercase letter or number
• When dots are used, each part of the name that is separated by the dots, is also called

a label (but there is a also a different concept of label in Ceph).

• Object name
• Unique within a bucket
• Technically, any UTF-8 string between 1 and 1024 bytes, but client software might add

more restritions
• Common practice is to implement a folder-like structure using slashes in the name.
• But creating the folder view is expensive: List all objects in a bucket and sort

Policies and ACLs

• Access control is managed through bucket policies and bucket and object
access control lists (ACLs)

• Policies is a very powerful but also hard to use mechanism
• Some information in the “Advanced usage of LUMI-O” section of the docs
• And there is also information in the Ceph manual
• Can be managed through s3cmd

• ACLs apply to individual buckets and objects
• Can only add rights
• Useful to make a bucket or object public, or give access to another project, but

this is done to individual objects (unless applied recursively)
• This is what rclone uses when uploading to the public or private end points in the

configurations created with the various tools for LUMI-O

https://docs.lumi-supercomputer.eu/storage/lumio/advanced/
https://docs.ceph.com/en/reef/radosgw/bucketpolicy/

Policies and ACLs
Examples

• Make a bucket and all objects in it public or private
s3cmd setacl --recursive --acl-public s3://bucket/
s3cmd setacl --recursive --acl-private s3://bucket/

• Grant or revoke read rights to a bucket
s3cmd setacl --acl-grant=’read:46YXXXXXX$46YXXXXXX’ s3://bucket
s3cmd setacl --acl-revoke=’read:46YXXXXXX$46YXXXXXX’ s3://bucket

• Note the use of single quotes to make sure that $46YXXXXXX is not interpreted as a variable
name!

• And similarly to objects

• Check the ACL and other information of a bucket or object
s3cmd info s3://2day-20241210
s3cmd info s3://2day-20241210/img/LUMI-2day-20241210-10-ObjectStorage/Title.png

Sharing data

• Public buckets and objects can be read by anyone in the world, even simply via a
web browser.

• It is possible to grant specific projects access to buckets and objects.
• See the previous slide for setting ACLs

• Access: e.g., project “46BAAAAAA” can list a bucket from project “46YXXXXXX”
(assuming the latter has given sufficient rights to the former) with: s3cmd ls
s3://46YXXXXXX:bucket/
s3cmd ls --recursive s3://46YXXXXXX:bucket/
rclone ls lumi-46BAAAAAA-private:"46YXXXXXX:bucket"

• Presigned URLs: Next slide

• Invite the other to the project
• But it is not possible to add a user who came in via puhuri to a 462-project

Sharing data: Presigned URLs

• Can be generated using rclone

• Access to anyone who gets the link without further authentication, for the
validity period of the link

• Presigned URLs depend on the authentication key that was used to create
them.
• Link expires when the key expires or is revoked, even if the validity period of the link

has not expired.

• Maximum lifespan of a link is limited to 7 days on LUMI-O.

• Create: with rclone link:
rclone link lumi-46YXXXXXX-private:bucket/object
rclone link --expire 2d lumi-46YXXXXXX-private:bucket/object

https://rclone.org/commands/rclone_link/

Some tips & tricks

• When using the rclone command line tool, it is possible to throttle the
speed for many commands with the --bwlimit command line option
• May be needed if you upload from home over a very bandwidth-limited

connection

• Sharing data from project A with project B does not protect the data
from being deleted when project A ends, even if project B is still valid.
• End of project: 90-days grace period, data read-only

• End of grace period: Data queued for deletion

Questions?

	Slide 1: Files on LUMI 2: LUMI-O object storage
	Slide 2: Why do I need to know this?
	Slide 3: What is LUMI-O?
	Slide 4: What is LUMI-O? (2)
	Slide 5: Lustre vs LUMI-O (1)
	Slide 6: Lustre vs LUMI-O (2)
	Slide 7: LUSTRE vs LUMI-O (3)
	Slide 8: Accessing LUMI-O
	Slide 9: The credential management web interface
	Slide 10: Credential mangement web interface: Create credentials (1)
	Slide 11: The credential management web interface
	Slide 12: Credential mangement web interface: Create credentials (2)
	Slide 13: The credential management web interface
	Slide 14: Credential mangement web interface: Create credentials (3)
	Slide 15: Credential mangement web interface: Create credentials (4)
	Slide 16: The credential management web interface
	Slide 17: Credential mangement web interface: Check credentials
	Slide 18: Credential mangement web interface: Extend credential lifetime
	Slide 19: Credential mangement web interface: Tool configuration (1)
	Slide 20: Credential mangement web interface: Tool configuration (2)
	Slide 21: Access through Open OnDemand
	Slide 22: Credential management via OOD (1)
	Slide 23: Credential management via OOD (2)
	Slide 24: Credential management via OOD (3)
	Slide 25: Credential management via OOD (4)
	Slide 26: Credential management via OOD (5)
	Slide 27: Browsing via OOD (1)
	Slide 28: Browsing via OOD (2)
	Slide 29: Browsing via OOD (3)
	Slide 30: Browsing via OOD (4)
	Slide 31: CLI tool configuration on LUMI: lumio-conf
	Slide 32: CLI tool configuration on LUMI: lumio-conf, rclone and s3cmd
	Slide 33: Bucket and object names
	Slide 34: Policies and ACLs
	Slide 35: Policies and ACLs Examples
	Slide 36: Sharing data
	Slide 37: Sharing data: Presigned URLs
	Slide 38: Some tips & tricks
	Slide 39: Questions?

